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1. K&K problem 8.5

A gyroscope with mass M has angular veloc-
ity ωs and moment of inertia Is. It pivots at
one end, and the center of mass is a distance l
from the pivot. The angular momentum of the
gyroscope is thus

L = Isωs

The gyroscope undergoes an acceleration a per-
pendicular to the spin axis. The fictitious force
will create a torque of magnitude

τ =Mal

The direction of this torque is perpendicular to
both the acceleration and the gyroscope axis
(down in the figure), causing the gyroscope axis
to precess in the direction indicated by the an-
gle θ. The magnitude of the angular momentum
will not change, but the direction will. Thus the
gyroscope axis will rotate around the direction
of acceleration. The rate at which this happens
is ω, and

dL

dt
= Lω = τ

This gives the following relation

Mla(t) = Isωsω(t)

Both the acceleration and the angular velocity
can depend on time. If we integrate both sides
of this equation, we can get a relation between
the final velocity and the total angle of rotation.
The integral of the acceleration is just the ve-
locity and the integral of the angular velocity is
just the angle:

Mlv = Isωsθ ⇒ v =
Isωs

Ml
θ

2. K&K problem 8.11

A hydrofoil moves with respect to the earth’s
surface at the equator with velocity v = 200
mi/hr directed along each of the four points of
the compass. At rest with respect to the surface
of the earth, the acceleration of gravity is g. We
are asked to find the effective gravitational ac-
celeration g′ that is felt by a passenger (of mass
m) who is at rest with respect to the hydrofoil.

The (fictitious) Coriolus force on the pas-
senger, which is proportional to the passenger’s
(vanishing) velocity in the hydrofoil’s frame,
must be zero if evaulated in this frame. The
(fictitious) centrifugal force on the passenger is

Fcent = −mΩ′ × (Ω′ × R)
= −m(Ω′(Ω′ · R)− R(Ω′ · Ω′))

= m(−Ω′(Ω′ · R) +RΩ′ 2)

where Ω′(v) is the total angular velocity of the
passenger, due both to the rotation of the earth
and to the motion of the hydrofoil; R = Rx̂ is
a vector pointing from the earth’s center to the
hydrofoil at the equator; and the “bac cab” rule
is applied to the first line. The hydrofoil’s ve-
locity has one of the four directions (E,W,N,S)
= (ŷ,−ŷ, ẑ,−ẑ), yielding an angular velocity ω
due to hydrofoil motion relative to the earth’s
surface:

ω =
v

R
(ẑ,−ẑ,−ŷ, ŷ)

To this one must add the earth’s angular velocity

Ω = Ωẑ

in order to get the total angular velocity Ω′ =
ω +Ω of the hydrofoil. Evidently Ω′ is perpen-
dicular to R, so

Fcent(v) = x̂mR(Ω′(v))2

Therefore g′ points along −x̂, i.e. toward the
earth’s center, for all four directions (E,W,N,S)
of v, as does g. Thus

g′ − g

g
≡ ∆g

g
=

−R((Ω′ 2 − Ω2)
g
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For these four directions,

Ω′ 2 − Ω2 = 2Ωω + ω2 (E)

= −2Ωω + ω2 (W)

= ω2 (N and S)

Therefore

∆g
g

=
R

g
(−2Ωω − ω2) (E)

=
R

g
(2Ωω − ω2 (W)

=
R

g
(−ω2) (N and S)

Using ω/Ω = 0.1931 and RΩ2/g = 0.003432, we
calculate |∆g/g| = 0.001325 from the 2Ωω term
and |∆g/g| = 0.000128 from the ω2 term. Thus

∆g/g = −0.001453 (E)
= +0.001197 (W)
= −0.000128 (N and S)

3. K&K problem 9.3

A particle moves in a circle under the influence
of an inverse cube law force. This means that the
potential is inverse squared and it is attractive.
The effective potential is given by

Ueff(r) =
L2

2mr2
− A

r2

The radial force is zero for a circular orbit, so
we can find the radius.

0 =
dUeff

dr
= − L2

mr3
+

2A
r3

This shows that a circular orbit can have any ra-
dius, but there is only one possible magnitude of
angular momentum, given by

L2 = 2Am

Plugging this value of the angular momentum
into the effective potential, we find the peculiar
result that

Ueff = 0

Since Ueff is constant, d2r/dt2 = 0, so if the par-
ticle acquires a nonzero radial velocity it will
continue with the same radial velocity. If the
particle moves with uniform radial velocity vr,
the following equations are satisfied

dr

dt
= vr

dθ

dt
=

L

mr2(t)

Solving the first is easy: r(t) = r0+vrt. Plugging
this result into the second equation, we find

dθ

dt
=

L

m(r0 + vrt)2

We can solve this equation by direct integration,
assuming that θ(0) = 0:

θ(t) =
∫ t

0

Ldt

m(r0 + vrt)2
=

L

mvr

(
1
r0

− 1
r(t)

)

We replace L with
√
2mA to get the final answer

θ(t) =
1
vr

√
2A
m

(
1
r0

− 1
r(t)

)

4. K&K problem 9.4

A particle moves in a circular orbit in the po-
tential U = −A/rn. We want to know for which
values of n the orbit is stable. The effective
potential is given by

Ueff =
L2

2mr2
− A

rn

To find the circular orbit radius we evaluate
dUeff/dr = 0:

dUeff

dr
= − L2

mr3
+

nA

rn+1

This gives the radius of the circular orbit r0
when we set it to zero.

rn−2
0 =

nAm

L2

Since rn−2
0 must be a positive quantity for any

value of n, and A > 0, this equation requires

n > 0
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We now look at the second derivative of the
effective potential at r = r0. If it is positive, then
it is a potential minimum and the orbit is stable.

d2Ueff

dr2
=

3L2

mr4
− n(n+ 1)A

rn+2

=
1
r4

(3L2

m
− n(n+ 1)A

rn−2

)
> 0

Since r is always greater than zero we can divide
it away. Substituting for rn−2 at r = r0,

3L2

m
− (n+ 1)L2

m
> 0 ⇒ n < 2

Putting both inequalities together,

0 < n < 2

Recall from the previous problem that when n =
2 the motion is barely unstable. When n = 0, U
is constant, so there is no attractive force, there-
fore no circular orbit: this case is also unstable.

5. K&K problem 9.6

A particle moves in an attractive central force
Kr4 with angular momentum l. If it moves in
a circular orbit with radius r0, the central force
must provide exactly the necessary centripetal
acceleration:

mv2

r0
= Kr40 =

l2

mr30
⇒ r70 =

l2

mK

Relative to r = 0, the energy of the orbit is

E =
1
2
mv2 +

1
5
Kr50

where we have integrated the force to get the
potential. Plugging in v2 = Kr50/m, we get

E =
1
2
Kr50 +

1
5
Kr50 =

7
10
Kr50

Substituting the above value for r0, we get the
final result for the energy (relative to r = 0):

E =
7
10
K

(
l2

mK

)5/7

To find the frequency of small radial oscillations,
we must evaluate the second derivative of the
effective potential. Remember that for small
oscillations the effective spring constant k for
radial motion is

k =
d2Ueff

dr2

∣∣∣∣
r0

The effective potential is

Ueff =
l2

2mr2
+

1
5
Kr5

The second derivative is easily found

d2U

dr2
=

3l2

mr4
+ 4Kr3

Plugging in l2 = m2v2r2 = mKr70, we get

d2U

dr2

∣∣∣∣
r0

= 7Kr30

Substituting the value of r0, we find the effective
spring constant k and the angular frequency ω of
radial oscillation about the stable circular orbit:

k = mω2 = 7K
( l2

mK

)3/7

ω =

√
7K
m

( l2

mK

)3/14

6. K&K problem 9.12

A spacecraft of mass m orbits the earth at a ra-
dius r = 2Re. It will transfer to another circular
orbit with radius r = 4Re.

(a.) We know the radius of each orbit, so we can
easily find the energies of the two orbits. The
energy of a bound orbit in a 1/r potential is
given by

E = −GMm

A

where A is the major axis of the elliptical (here
the diameter of the circular) orbit. We can use
this to find the energies of the two orbits. The
values of A are simply 4Re for the first and 8Re
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for the second. The energy input needed to go
from one orbit to the other is at least

∆E = −GMm

Re

(
1
8
− 1

4

)
=
GMm

8Re

Plugging in the values given,

∆E = 2.34× 1010 joules

(b.) At point A, the rocket is fired, putting
the spacecraft in an elliptical orbit. The major
axis of this orbit is A = 6Re. To find the initial
speed, we use the energy equation. The energy is
partly gravitational potential energy and partly
kinetic energy:

E =
1
2
mv2

0 − GMm

2Re
= −GMm

4Re

Solving this equation for v0, we find the orbital
speed

v0 =
√
GM

2Re

The energy of the elliptical orbit is given by

E = −GMm

6Re
⇒ ∆E =

GMm

12Re

The change in energy at point A is entirely due
to a change in speed.

∆E =
1
2
mv2

1 − 1
2
mv2

0 ⇒ v1 =
√

2GM
3Re

The change in speed required at point A is thus

∆vA =

(√
2
3
−

√
1
2

) √
GM

Re
= 865 m/sec

We repeat this analysis at point B. Conservation
of angular momentum gives

2Rev1 = 4Rev2 ⇒ v2 =
√
GM

6Re

The energy of the new circular orbit is given by

E = −GMm

8Re
⇒ ∆E =

GMm

24Re

Again this is due to the change in speed.

∆E =
1
2
mv2

3 − 1
2
mv2

2 ⇒ v3 =
√
GM

4Re

Finally we obtain the change in speed at point B

∆vB =

(
1
2
−

√
1
6

) √
GM

Re
= 726 m/sec

Since the two velocities at point A are both tan-
gent to each other, and similarly for point B,
the only changes in the velocities at either point
are the changes in their magnitudes.

7. A satellite of mass m moves in a circular or-
bit of radius R at speed v. It is influenced by
the gravity of a fixed mass at the origin.

(a.) The mechanical energy of the satellite is
given by

E =
1
2
mV 2 − GMm

R

We know that gravity exactly provides the cen-
tripetal acceleration.

GMm

R2
=
mV 2

R
⇒ GM

R
= V 2

The total energy is thus

E =
1
2
mV 2 −mV 2 = −1

2
mV 2

(b.) At a certain point on the orbit, the direction
of travel of the satellite changes. The magnitude
of the velocity does not change, so the total en-
ergy of the orbit doesn’t change. We can now
find the kinetic energy at closest approach:

E = −1
2
mV 2 =

1
2
mv2 − 5GMm

R

=
1
2
mv2 − 5mV 2

⇒ v = 3V

(c.) The circular orbit has angular momentum
L1 = mRV , while the elliptical orbit’s angular
momentum, evaluated at the perigee, is

L2 = m
R

5
3V =

3
5
L1
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Therefore, just after the transition from circu-
lar to elliptical orbit, a fraction 3

5 of the original
velocity must remain tangential, while 4

5 of it
becomes radial (the squares of the two fractions
must add to unity according to Pythagoras).
Therefore the satellite turns through an angle

α = arctan
4/5
3/5

= 53.1◦

8. A spaceship is moving on a circular path
that will take it directly through a gas cloud.
The angular momentum with respect to the gas
cloud is measured to be constant. We want to
know what attractive central force causes this.
Immediately we notice that as the ship passes
through the center of the cloud, it velocity must
become infinite, because the angular momentum
l = mvr is conserved. If l were zero, the ship
could only fall straight into the cloud.

We can express the circular trajectory of
the ship as a function of θ by inspection:

r(θ) = 2R cos θ (−π/2 < θ < π/2)

Take φ to be the azimuth of the spaceship on
the circle (−π < φ < π), with φ ≡ 0 when θ = 0.
Consider the isosceles triangle with sides r, r,
and R. Requiring its angles to add up to π, it is
easy to see that φ = 2θ.

We are given two definite facts. One is that
the ship’s angular momentum about the center
of the cloud

L = mr2θ̇ = 4mR2θ̇ cos2 θ

is constant. (This expression confirms our pre-
vious observation that the ship’s velocity 2Rθ̇
must be infinite at the center of the cloud, where
cos θ = cosπ/2 = 0.) The second fact is that
the spaceship moves in a circle of radius R. The
centripetal force mRφ̇2 required to keep it in cir-
cular motion must be supplied by the component
along R of the unknown attractive force F :

F cos θ = mRφ̇2 = 4mRθ̇2

Using the previous equation for L to eliminate θ̇
from this equation,

F cos θ = 4mR
L2

16m2R4 cos4 θ

F =
L2

4mR3 cos5 θ

Finally, using the first equation to eliminate
cos θ,

F =
L232R5

4mR3r5

F =
8L2R2

mr5

Since L and R are constant, the unknown at-
tractive force depends on the inverse fifth power
of the spaceship’s separation from the center of
the cloud, for this particular spaceship trajec-
tory. The last equation is the desired result.
However, this is no simple force field: its cou-
pling to the spaceship is contrived to depend
quadratically both upon the spaceship’s angular
momentum about the cloud’s center and upon
the radius of its circular orbit.

As an alternative to considering the cen-
tripetal force that must be supplied by F , one
can hypothesize that F is a conservative as well
as a central force. (At least it is clear from
the fact that the spaceship’s orbit is closed that
there can be no monotonic decrease or increase
in the total energy E). From the above equa-
tion for L, one readily sees that the ship’s speed
v = Rφ̇ = 2Rθ̇ is proportional to r−2. There-
fore the ship’s kinetic energy K is proportional
to r−4. If E is to be conserved, the potential en-
ergy U also must be proportional to r−4 so that
it can cancel the r dependence of K; its radial
derivative −dU/dr = Fr must then be propor-
tional to r−5. The constant of proportionality is
easily verified to be the same as is given above.


